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The Dynamics of Multidimensional Secession: Fixed Points and Ideological Condensation
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We explore a generalized, stochastic seceder model of societal dynamics with variable size polling
groups and higher-dimensional opinion vectors, revealing its essential modes of self-organized
segregation. Renormalizing to a discrete, deterministic version, we pin down the upper critical
size of the sampling group and analytically uncover a self-similar hierarchy of dynamically
stable, multiple-branch fixed points. In d � 3, the evolving, coarsening population suffers collapse to
a 2D ideological plane.
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mechanism favoring individuality cannot only create
distinct groups, but also yields a rich diversity of cluster-

tion clusters mark their trajectories, provides an addi-
tional degree of freedom.
Dynamical phenomena in which an initially homoge-
neous collection of weakly interacting particles can dis-
perse, aggregate, and form clusters arises in many
different physical, biological, and sociological contexts.
Condensation and droplet formation [1] is, of course, a
well-known example in physics, galaxy formation and
clustering [2] another. In traffic patterns [3], the real-
space jams that plague highway driving are, for some, a
daily reminder of such intrinsic tendencies in correlated
systems far from equilibrium. The formation of swarms,
schools, herds [4], or even the flocking of birds [5,6],
provide compelling zoological illustrations. In these
cases, joining the group yields advantages over standing
alone, be it by better exploration of food resources, pro-
tection from predators, or easing the flow in aerodynamic
flight. Nevertheless, sometimes, as in fashion trends and
similar social (or even financial) settings, standing apart
from the crowd can also be a seed for the formation of
new groups, splitting off the mainstream, though maybe
becoming the mainstream themselves later on. In these
instances, multiple steady-state groups can be the norm.
Such matters are manifest in recent, though now classic,
implementations of Arthur’s variant of the El Farol
bar problem [7], as, for example, discussed by Challet
and Zhang [8], where a multitude of competing agents,
armed with limited memory strategies, compete via
statistical Sisyphian dynamics to be in the minority
group. Interestingly, with stochasticity introduced to the
decision-making process, Johnson and co-workers [9]
uncovered a tendency towards self-organized segregation
within such evolutionary minority games. Subsequently,
Hod and Nakar [10] discovered a dynamical phase tran-
sition in this setting, between two group segregation and
single group clustering, driven by the economic cost-
benefit ratio defined in the model. More recently, Szabó
and Hauert [11] studied three group dynamics amidst
cooperation, defection, and abstention in a noncompul-
sary public goods game. The seceder model [12] was
introduced, by contrast, to demonstrate that an interative
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forming dynamics. The essential tack was to give a small
advantage to individuals that distinguish themselves from
others. This is not unnatural, since in epidemics, for
example, genetic differences can enhance long-term
survival probabilities. Likewise, for players in a minority
game, distinctness may an asset. In this Letter, we
consider the seceder model in its broadest sense. Its
description is stunningly simple: within a population of
individuals, each described by a genotype, strategy, or
opinion variable, choose a subset and calculate its aver-
age. From within this selection multiplet, the individual
most distant from the mean is picked. Create an offspring
by taking this parent’s value plus a small uniform deviate.
Finally, replace a random member of the population by
this new offspring. This process, pitting conformity
against dissent, is then iterated through many genera-
tional time steps.

Despite the complexity of its resulting segregative dy-
namics, the seceder model and its fluctuation-dominated
behavior may best be understood from the perspective of
critical phenomena. In this spirit, it is natural to consider
the dimensionality dependences inherent to the model,
with the expectation of finding a simpler, classical non-
equilibrium dynamics within some sector of a larger
parameter space. Wisdom in this regard may be had from
the Bak-Sneppen model of punctuated evolution [13],
wherein a like, innocuously trim update algorithm
engendered extraordinarily rich spatiotemporal dynam-
ics. Even so, a mean-field (MF) limit of this model was
subsequently engineered [14,15] and further explored
[16], with simplified scaling retrieved by introducing
system-wide correlations to the interactions. Here, for
the seceder model, we are motivated by similar goals.
Clearly, the number of parameters is restricted—we
have the population size N, understood to diverge in
the thermodynamic limit. There is also the size m of the
selection multiplet; finally, the dimensionality d of
the genotype or ideology variable, which determines the
nature of the base space through which various popula-
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FIG. 1 (color). Space-time plots of the d � 1 stochastic se-
ceder model with selection multiplets m � 3–8. For m � 3,
several groups occur; however, for m � mc � 4, the segrega-
tional dynamics yields just two repelling clusters, character-
ized by increasing homogeneity in the societal seceder limit.
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We begin by enlarging the selection group from which
the parent is chosen. Naively, we would expect the limit
m ! N, which introduces increasing cross correlation
within the society, to elicit, eventually, MF behavior, if
only in the extreme case when m � N, when we are
averaging over the entire population using the societal
mean to determine the most distant, reproduced individ-
ual. Indeed, this is the case. The surprise, however, comes
with the abruptness of the transition. There is already a
marked change of behavior as we switch from triplet to
quartet selection. In Fig. 1, we show single runs of the
d � 1 seceder model using selection multiplets m � 3–8,
within a large population, N � 512. For m � 3, we have
trademark seceder demeanor, the branching characterized
by three dominant but fluctuating arms, centered about
the origin, with ample small-scale stochastic structure
associated with the transient appearance of variously
short-lived clusters. Rather than a gradual transition, we
find for m � 4 that the typical stable configuration sud-
denly involves two branches, not three. In addition, these
two branches exhibit only very modest fluctuations.
Increasing the selection group to m � 5 further dimin-
ishes the noise, but hardly affects the tilt of what seems to
be the nearly linear divergence of the two clusters. Next,
for m � 6 and 7, there is a discrete jump to an altogether
different, but closely allied, pair of trajectories. With
m � 8 (and 9), another jump, and so it goes with each
successive even-odd pair of selection multiplets. As
m ! N, the trajectories are devoid of fluctuation, exhib-
iting classic MF behavior. Thus we see that the dominant
dynamic of secession involves, for m � 4, segregation
into two evenly populated opposing groups with a free
interchange of individuals over the course of time.
Ensemble averaging over many realizations, we have
systematically studied the growth of this intergroup sepa-
ration. Only for triplet selection, m � 3, do we find a
fractional power-law divergence, with scaling index
very close to 3=4, our measured value being 0:74� 0:01.

With the seceder model defined as above, the ideologi-
cal space is a continuum. Clearly, discretizing the model
alters no essential features. Indeed, much can be gleaned
by considering this discrete model in its deterministic
limit, wherein the most distinct individual is reproduced
exactly, rather than yielding a merely approximate next of
kin. One is led to a set of nonlinear coupled ordinary dif-
ferential equations (ODEs) [12], first-order rate equations
for the concentration simplex �x1; x2; . . . ; xB�, describing
the evolution of the discrete set of B genotypes pos-
sible within the population: _xxj �

P
B
i1;...;im�1 �

j
i1i2...im

�
xi1xi2 . . . xim � xj, for j 2 �1; . . . ; B�. These equations
transform the seceder model into an evolving chemical
reaction system whose dynamics are dictated by the law
of mass kinetics and the constraints of unit dilution flux,
possessing some features reminiscent of earlier efforts on
generalized replicator equations [17]. Here one is look-
ing at the stability of a B-branch solution generated by
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m-multiplet selection group dynamics. The � coefficients
are zero unless the genotype is the distant outlier—either
in isolation, in which case � � 1, or, as happens
occasionally, in sharing that distinction with p other
individuals: � � 1=p. As a practical matter, these coef-
ficients, combinatoric in origin, can be generated system-
atically via multinomial expansion �x1 
 x2 
 � � � xB�m,
carefully dividing numerical prefactors in appropriate
proportions among relevant rate variables _xxi. Proba-
bility conservation demands this connection to the multi-
nomial expansion, but it is the parceling out of terms that
guarantees the complexity of the model. With this set of
ODEs in hand, essentially providing a coarse-grained
real space renormalization group (RG) prescription of
the original seceder model, we follow the flow equations
for the concentration variables, characterizing all rele-
vant fixed points.Within this broader mB space, the d � 1
seceder model exhibits its full richness. As an indication
of the wealth of this geometric pattern formation, con-
sider the triplet selection dynamic, m � 3, where a self-
similar hierarchy of multibranch fixed points emerges.We
illustrate, e.g., the case B � 4, for which

_xx1 � x31 
 3x1�x22 
 x23 
 x24� 
 3x1x2x3 
 6x1x3x4 � x1;

_xx2 � x32 
 3x2�x
2
1 
 x23 
 x24� 
 3x2x3x4 � x2:

Because of branch symmetry and the normalization con-
straint x2 � 1=2� x1, demanding _xx1 � 0, we are led to
the cubic equation 7x31 � 6x21 
 5=4x1 � 0, yielding a
unique superstable FP �x1; x2; x3; x4� � � 514 ;

1
7 ;

1
7 ;

5
14�, as

well as the less stable 2-branch solutions �12 ; 0; 0;
1
2� and

�0; 12 ;
1
2 ; 0�. The situation for B � 5 is slightly different —

insisting upon symmetry x5 � x1 and x4 � x2, in
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FIG. 2 (color online). (a) Flows in x1x2x3 space for the d � 1
deterministic seceder model. A superstable 3-branch FP exists
within the equilateral triangle for m< 4 only. (b) Middle
branch growth rate, _xx2, for different multiplet selection group
sizes, m � 3–5, revealing stability of the 2-branch solution
�12 ; 0;

1
2� for quartet selection and greater.
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addition to the normalization constraint x3 � 1� 2x2 �
2x1, we have the recurring 2-branch solutions with x1 � 0
and x2 � 1=2 and vice versa, leaving us with two coupled
bilinear equations in the variables x1 and x2; graphically a
rotated displaced ellipse and line within the unit square.
There are two intersection points: one fully fledged
superstable 5-branch solution, � 413 ;

2
13 ;

1
13 ;

2
13 ;

4
13�; the

other, an unstable lower dimensional 4-branch solution,
�14 ;

1
4 ; 0;

1
4 ;

1
4�. The latter solution can, thanks to the gap

x3 � 0, be understood, via coarse graining as literally
self-similar to its 2-branch cousin �12 ; 0;

1
2�. This sort of

hierarchical connection manifests itself regularly when-
ever we uncover vanishing xi in the branch structure. The
most compelling instance of this phenomenon appears
when we search for a superstable 8-branch FP. In fact,
there is none. The ODE flows converge on a peculiar
6-branch solution, �1140 ;

1
8 ; 0;

1
10 ;

1
10 ; 0;

1
8 ;

11
40�, which is exactly

self-similar to the strongly attractive 3-branch fixed point
�25 ;

1
5 ;

2
5�. Interestingly, this lesser 8-branch solution is dis-

tinct from the B � 6 FP, roughly (0.30, 0.12, 0.08, 0.08,
0.12, 0.30), easily shown to be irrational, as is the
7-branch and all those beyond 8. The 9-, 10-, and
12-branch FPs show no zeros, but such behavior becomes
increasingly rare. The B � 11 solution also has two miss-
ing branches, x4 � x8 � 0, but with x1 � 0:271, x2 �
0:089, x3 � 0:044, x5 � 0:047, x6 � 0:100, can be coarse
grained to a broad 3-branch, though in this case only
approximately self-similar to our dominant FP �25 ;

1
5 ;

2
5�;

likewise, the 15-branch, although 19- and 21-branch FPs
show three gaps and a self-similarity to the 4-branch
� 514 ;

1
7 ;

1
7 ;

5
14�.

An additional payoff of this RG treatment of the se-
ceder model is an explanation of the relative stability of
2- and 3-branch solutions for triplet (m � 3) and higher
multiplet (m � 4) selection groups; recall Fig. 1. The
essential dichotomy can be understood pictorially by
following the flows of the �m;B� � �3; 3� replicator sys-
tem: see Fig. 2(a), where we show the relevant section of
the 111� plane, x1 
 x2 
 x3 � 1, our superstable fixed
point, �25 ;

1
5 ;

2
5�, within the unit triangle. We note, in par-

ticular, that the outermost 2-branch solution �12 ; 0;
1
2� is

unstable to small perturbations off the edge. In turn, the
single branch FPs at the triangle vertices are entirely
unstable. As m ! 4, however, the interior FP migrates
to the midpoint of the triangle’s lower edge, reversing the
flows and stabilizing the 2-branch dynamic. From this
vantage point, it is clear that quartet, rather than triplet,
selection is the marginal case, a fact quickly confirmed
by a stability analysis of the �12 ; 0;

1
2� FP for arbitrary m.

To linear order, we find _xx2 � 2�m1��
1
2�
m�1 � 1�x2 
O�x22�,

so we flow back to vanishing x2 for 2m � 2m�1; i.e., m �
4, since the prefactor of the quadratic term is negative
for the marginal value mc � 4: see Fig. 2(b), which shows
the full behavior. In fact, for a continuously variable
polling group of size m � 4� ", the perturba-
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tively stable 3-branch FP is located off the triangle’s
lower edge, with x2 �

"
12 �ln2�

1
4�.

As one considers the stability of higher (B > 3) multi-
branch FPs, mc � 4 remains the upper critical size of the
selection subset; e.g., with �m;B� � �4; 4�, the superstable
FP lies at the midpoint of the edge connecting the x1
and x4 vertices of the unit tetrahedron—that is,
�x1; x2; x3; x4� � �12 ; 0; 0;

1
2�. All initial starting points

within the tetrahedron flow outwards to the FP on this
edge. While the other five edges of the tetrahedron are
stable along their lengths, they are unstable in all other
directions; the vertices, corresponding to 1-branch solu-
tions, are maximally unstable. For triplet selection, our
superstable 4-branch FP is � 514 ;

1
7 ;

1
7 ;

5
14�, which lies within

the tetrahedron. There are also stable 3-branch FPs in this
case located in the faces of the tetrahedron, where one of
the xi � 0, but these are unstable to perturbations toward
the interior. These findings might suggest, at least ini-
tially, that the greatest stability is associated with the
largest number of branches, i.e., the �B� 1�-branch being
unstable to B-branch solutions, etc. However, the absence
of superstable 8-branch FP, for starters, and the subse-
quent appearance of gaps for B � 11; 13; 17 in the spec-
trum indicate that any runaway tendency toward
proliferation of branches from tip splitting will be cut
off. Indeed, that is precisely the characteristic behavior of
the triplet seceder model, where 3-branch dynamics are
typically seen, with occasional 4-, 5-, or 6-branch runs.

We should stress, in this regard, that the 3-branch
solution is an extraordinarily robust feature of the
model, becoming even more so in higher dimensions,
258103-3



FIG. 3 (color). Despite greatly biased initial conditions, with
two distinct localized groups, the d � 2 triplet seceder model
evolves the population toward an endgame of three equidistant,
separating clusters. Here N � 2000, and the temporal snap-
shots, indicated by different colors, correspond to successive
times t � 2i, for i � 2–8, red through mauve, respectively.

FIG. 4 (color). Self-organized secession in d � 3, as well as
higher dimensions, collapses to the plane defined by three
divergent groups. Population N � 1000; generations t � 29–12.
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where the genotype is specified by a d-component vector
rather than a scalar, the case we have focused on thus
far. For example, in d � 2, an initially homogeneous, or
highly polarized population for that matter (see Fig. 3),
will eventually segregate into three distinct diverging
groups. In d � 3 dimensions, we might expect four clus-
ters, localized at the corners of an expanding tetra-
hedron, preserving the notion of equal distance; however,
this does not happen at all. Again, we observe the for-
mation of just three groups—note Fig. 4. The effect is
stronger still for d � 4. Apparently, asymptotic higher-
dimensional secession involves segregational collapse to
a greatly reduced, 2D subspace—the hyperplane defined
by a coarsened trio of condensed opinion clusters whose
angular orientation may vary from one realization to the
next, but whose essential geometry does not. Interestingly,
this dimensional reduction can also be understood within
the deterministic model—one considers the stability of
d
 1 equally separated clusters in d dimensions to per-
turbations (ultimately, statistical in nature) that bring one
group closer to the rest [18]. For d � 3, we find that the
errant group is unstable and goes extinct, whereas for
d < 3, the zero FP associated with this vanishing group
reverses stability, yielding three clusters with relative
populations set by the degree of symmetry breaking.

In summary, we have revealed the mean-field limit
of the multidimensional seceder model. For selection
multiplet sizes m � mc � 4, the nonequilibrium dynam-
ics produce a steady state with two opposing groups,
independent of d. In the extreme societal seceder limit
(m ! N), the noisy dynamics dies away, leaving two
tightly knit clusters. For m � 3, multiple groups are typi-
cal, with three the norm. Higher-dimensional genotypes
produce, surprisingly, no further fragmentation, render-
258103-4
ing irrelevant excessive ideological degrees of freedom.
Using a coarse-grained RG prescription, which dis-
cretizes and renders deterministic the model, we analyti-
cally uncover a self-similar hierarchy of multiple branch
FPs in a gapped spectrum. Additional work, concerning
kinetic symmetry breaking, population fragmentation,
and party dynamics in an evolutionary political game,
will be reported separately [18]. In a more speculative
vein, we are presently examining the broader dynamical
significance of mc � 4, e.g., regarding the relative stabil-
ity of two versus multiparty political systems.

Financial support for T. H.-H. has been provided by
NSF DMR-0083204, Condensed Matter Theory.
[1] J. A. Blackman et al., Phys. Rev. Lett. 84, 4409 (2000).
[2] M. Drinkwater, Science 287, 1217 (2000).
[3] B. Kerner et al., Phys. Rev. Lett. 79, 4030 (1997).
[4] J. Parrish et al., Science 284, 99 (1999).
[5] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
[6] E.V. Albano, Phys. Rev. Lett. 77, 2129 (1996).
[7] W. B. Arthur, Am. Econ. Assoc. Proc. 84, 406 (1994).
[8] D. Challet and Y.-C. Zhang, Physica (Amsterdam) 246A,

407 (1997).
[9] N. F. Johnson et al., Phys. Rev. Lett. 82, 3360 (1999).

[10] S. Hod and E. Nakar, Phys. Rev. Lett. 88, 238702 (2002).
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